3.4.79 \(\int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\) [379]

3.4.79.1 Optimal result
3.4.79.2 Mathematica [A] (verified)
3.4.79.3 Rubi [A] (verified)
3.4.79.4 Maple [B] (verified)
3.4.79.5 Fricas [A] (verification not implemented)
3.4.79.6 Sympy [F(-1)]
3.4.79.7 Maxima [B] (verification not implemented)
3.4.79.8 Giac [B] (verification not implemented)
3.4.79.9 Mupad [F(-1)]

3.4.79.1 Optimal result

Integrand size = 43, antiderivative size = 117 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {\sqrt {a} (3 A+4 B+8 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {a (A+4 B) \tan (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d} \]

output
1/4*(3*A+4*B+8*C)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/ 
2)/d+1/4*a*(A+4*B)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/2*A*sec(d*x+c)*(a 
+a*cos(d*x+c))^(1/2)*tan(d*x+c)/d
 
3.4.79.2 Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.95 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \left (\sqrt {2} (3 A+4 B+8 C) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^2(c+d x)+2 (2 A+(3 A+4 B) \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{8 d} \]

input
Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2) 
*Sec[c + d*x]^3,x]
 
output
(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^2*(Sqrt[2]*(3*A 
+ 4*B + 8*C)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^2 + 2*(2*A + ( 
3*A + 4*B)*Cos[c + d*x])*Sin[(c + d*x)/2]))/(8*d)
 
3.4.79.3 Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.186, Rules used = {3042, 3522, 27, 3042, 3459, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3522

\(\displaystyle \frac {\int \frac {1}{2} \sqrt {\cos (c+d x) a+a} (a (A+4 B)+a (A+4 C) \cos (c+d x)) \sec ^2(c+d x)dx}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sqrt {\cos (c+d x) a+a} (a (A+4 B)+a (A+4 C) \cos (c+d x)) \sec ^2(c+d x)dx}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (A+4 B)+a (A+4 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {\frac {1}{2} a (3 A+4 B+8 C) \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx+\frac {a^2 (A+4 B) \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{2} a (3 A+4 B+8 C) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a^2 (A+4 B) \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {\frac {a^2 (A+4 B) \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {a^2 (3 A+4 B+8 C) \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {a^{3/2} (3 A+4 B+8 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a^2 (A+4 B) \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}\)

input
Int[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c 
 + d*x]^3,x]
 
output
(A*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(2*d) + ((a^(3/2)*( 
3*A + 4*B + 8*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]) 
/d + (a^2*(A + 4*B)*Tan[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/(4*a)
 

3.4.79.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 

rule 3522
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^m* 
(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C - B*d)*( 
a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2* 
(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, 
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ 
[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
3.4.79.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1117\) vs. \(2(101)=202\).

Time = 12.83 (sec) , antiderivative size = 1118, normalized size of antiderivative = 9.56

method result size
parts \(\text {Expression too large to display}\) \(1118\)
default \(\text {Expression too large to display}\) \(1394\)

input
int((a+cos(d*x+c)*a)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, 
method=_RETURNVERBOSE)
 
output
1/2*A*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*a*(ln(4/(2*cos 
(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2* 
d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^ 
(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)- 
2*a)))*sin(1/2*d*x+1/2*c)^4+(-12*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^ 
(1/2)-12*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c) 
+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a-12*ln(-4/(2*cos(1/ 
2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x 
+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^2+10*2^(1/2)*(a*sin(1 
/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+3*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1 
/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2* 
a))*a+3*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c) 
-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)/a^(1/2)/(2*cos(1/ 
2*d*x+1/2*c)-2^(1/2))^2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^2/sin(1/2*d*x+1/2*c 
)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+B*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(-2*a*(ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2 
*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-2/(2* 
cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1 
/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^2+2*2^(1/2)*(a*si 
n(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+ln(-2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*...
 
3.4.79.5 Fricas [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.57 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {{\left ({\left (3 \, A + 4 \, B + 8 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (3 \, A + 4 \, B + 8 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left ({\left (3 \, A + 4 \, B\right )} \cos \left (d x + c\right ) + 2 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c 
)^3,x, algorithm="fricas")
 
output
1/16*(((3*A + 4*B + 8*C)*cos(d*x + c)^3 + (3*A + 4*B + 8*C)*cos(d*x + c)^2 
)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + 
c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + c 
os(d*x + c)^2)) + 4*((3*A + 4*B)*cos(d*x + c) + 2*A)*sqrt(a*cos(d*x + c) + 
 a)*sin(d*x + c))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)
 
3.4.79.6 Sympy [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x 
+c)**3,x)
 
output
Timed out
 
3.4.79.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3352 vs. \(2 (101) = 202\).

Time = 3.11 (sec) , antiderivative size = 3352, normalized size of antiderivative = 28.65 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\text {Too large to display} \]

input
integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c 
)^3,x, algorithm="maxima")
 
output
1/16*((3*(log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt 
(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos 
(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1 
/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 
 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*s 
in(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 
1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) 
 + 2))*cos(4*d*x + 4*c)^2 + 12*(log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d 
*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1 
/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*s 
qrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2* 
cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x 
+ 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c 
)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2 
)*sin(1/2*d*x + 1/2*c) + 2))*cos(2*d*x + 2*c)^2 + 3*(log(2*cos(1/2*d*x + 1 
/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sq 
rt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2 
*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 
 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2 
*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - l...
 
3.4.79.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 208 vs. \(2 (101) = 202\).

Time = 0.38 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.78 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=-\frac {\sqrt {2} {\left (\sqrt {2} {\left (3 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 4 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 8 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) + \frac {4 \, {\left (6 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 8 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 5 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 4 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}\right )} \sqrt {a}}{16 \, d} \]

input
integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c 
)^3,x, algorithm="giac")
 
output
-1/16*sqrt(2)*(sqrt(2)*(3*A*sgn(cos(1/2*d*x + 1/2*c)) + 4*B*sgn(cos(1/2*d* 
x + 1/2*c)) + 8*C*sgn(cos(1/2*d*x + 1/2*c)))*log(abs(-2*sqrt(2) + 4*sin(1/ 
2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))) + 4*(6*A*sgn(cos( 
1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 + 8*B*sgn(cos(1/2*d*x + 1/2*c))*s 
in(1/2*d*x + 1/2*c)^3 - 5*A*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c) 
 - 4*B*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c))/(2*sin(1/2*d*x + 1/ 
2*c)^2 - 1)^2)*sqrt(a)/d
 
3.4.79.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\int \frac {\sqrt {a+a\,\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\cos \left (c+d\,x\right )}^3} \,d x \]

input
int(((a + a*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/c 
os(c + d*x)^3,x)
 
output
int(((a + a*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/c 
os(c + d*x)^3, x)